Name	 Date	Class
Name	 Date	

Ionic Compounds and Metals

Section 7.1 Ion Formation

In your textbook, read about chemical bonds and formation of ions.

Use each of the terms below just once to complete the passage.

chemical bond	electrons	energy level	ions	noble gases
nucleus	octet	pseudo-noble gas	formations	valence
The force that he	olds two atoms together is o	called a(n) (1)		
Such an attachment	may form by the attraction	of the positively charg	ed	
(2)	of one atom for	or the negatively charge	d	
(3)	of another ato	m, or by the attraction of	of charged atom:	s, which are called
(4)	. The attraction	ns may also involve	٠	
(5)	electrons, which	are the electrons in the	outermost	
(6)	. The (7)	are a fai	mily of elements	s that have very
little tendency to re	act. Most of these element	s have a set of eight out	ermost electrons	s, which is called a
stable (8)	. The relat	ively stable electron str	uctures develop	ed by loss of
electrons in certain	elements of groups 3, 4, 1	3, and 14 are called (9)		·
For each statemen	nt below, write <i>true</i> or <i>fal</i> s	se.		
	0. A positively charged io			
1	1. Elements in group 1 los charge.	se their one valence elec	etron, forming a	n ion with a 1+
	12. Elements tend to react	so that they acquire the	electron structu	re of a halogen.
	3. A sodium atom tends to			·
1	4. The electron structure formation.	of a zinc ion (Zn ²⁺) is ar	n example of a p	seudo- noble gas
. 1	15. A Cl ⁻ ion is an exampl	e of a cation.		
	16. The ending -ide is used			
	17. Nonmetals form a stab			g electrons and

Name	 Date	Class

Section 7.2 Ionic Bonds and Ionic Compounds

In your textbook, read about forming ionic bonds and the characteristics of ionic compounds.

Circle the letter of the choice that best completes the statement or answers the question.

- 1. An ionic bond is
 - a. attraction of an atom for its electrons.
 - **b.** attraction of atoms for electrons they share.
 - **c.** a force that holds together atoms that are oppositely charged.
 - **d.** the movement of electrons from one atom to another.
- 2. The formula unit of an ionic compound shows the
 - a. total number of each kind of ion in a sample.
 - **b.** simplest ratio of the ions.
 - c. numbers of atoms within each molecule.
 - d. number of nearest neighboring ions surrounding each kind of ion.
- 3. The overall charge of a formula unit for an ionic compound
 - a. is always zero.

c. is always positive.

b. is always negative.

- d. may have any value.
- 4. How many chloride (Cl⁻) ions are present in a formula unit of magnesium chloride, given that the charge on a Mg ion is 2+?
 - a. one-half
- b. one
- c. two

d. four

- 5. Ionic bonds generally occur between
 - a. metals.

c. a metal and a nonmetal.

b. nonmetals.

d. noble gases.

- 6. Salts are examples of
 - a. nonionic compounds.

c. nonmetals.

b. metals.

- d. ionic compounds.
- 7. A three-dimensional arrangement of particles in an ionic solid is called a(n)
 - a. crystal lattice.

c. formula unit.

b. sea of electrons.

- d. electrolyte.
- 8. In a crystal lattice of an ionic compound,
 - a. ions of a given charge are clustered together, far from ions of the opposite charge.
 - **b.** ions are surrounded by ions of the opposite charge.
 - c. a sea of electrons surrounds the ions.
 - d. neutral molecules are present.

\$	
Name	Date Class
and the promote transfer for the contract that the first of the contract that the co	

Section 7.2 continued

- **9.** What is the relationship between lattice energy and the strength of the attractive force holding ions in place?
 - a. The more positive the lattice energy is, the greater the force.
 - b. The more negative the lattice energy is, the greater the force.
 - c. The closer the lattice energy is to zero, the greater the force.
 - d. There is no relationship between the two quantities.
- 10. The formation of a stable ionic compound from ions
 - a. is always exothermic.

- c. is always endothermic.
- b. may be either exothermic or endothermic.
- d. neither absorbs nor releases energy.
- 11. In electron transfer involving a metallic atom and a nonmetallic atom during ion formation, which of the following is correct?
 - a. The metallic atom gains electrons from the nonmetallic atom.
 - b. The nonmetallic atom gains electrons from the metallic atom.
 - c. Both atoms gain electrons.
 - d. Neither atom gains electrons.

Underline the word that correctly describes each property in ionic compounds.

12.	Melting point	Low	High
13.	Boiling point	Low	High
14.	Hardness	Hard	Soft
15.	Brittleness	Flexible	Brittle
16.	Electrical conductivity in the solid state	Good	Poor
17.	Electrical conductivity in the liquid state	Good	Poor
18.	Electrical conductivity when dissolved in water	Good	Poor

For each statement below, write true or false.

 19.	The crystal lattice of ionic compounds affects their melting and boiling points.
 20.	The lattice energy is the energy required to separate the ions of an ionic compound.
 21.	The energy of an ionic compound is higher than that of the separate elements that formed it.
 22.	Large ions tend to produce a more negative value for lattice energy than smaller ions do.
 23.	Ions that have larger charges tend to produce a more negative lattice energy than ions with smaller charges do.

	•	
Name	Date	Class

Section 7.4 Metallic Bonds and the Properties of Metals

In your textbook, read about metallic bonds.

Use the diagram of metallic bonding to answer the following questions.

- 1. What is the name of the model of metallic bonding that is illustrated?
- 2. Why are the electrons in a metallic solid described as delocalized?
- 3. Which electrons from the metal make up the delocalized electrons?
- 4. Are the metal atoms that are shown cations or anions? How can you tell?
- 5. How do the metallic ions differ from the ions that exist in ionic solids?
- 6. Explain what holds the metal atoms together in the solid.

In your textbook, read about the properties of metals.

For each property, write yes if the property is characteristic of most metals, or no if it is not. If the property is a characteristic of metals, explain how metallic bonding accounts for the property.

- 7. Malleable _____
- 8. Brittle
- 11. Low boiling point
- 12. Ductile
- 13. Poor conduction of heat
- 14. Good conduction of electricity

RIVATE TREVE

Ionic Compounds and Metals

Reviewing Vocabulary

Match the definition in Column A with the term in Column B.

	Column A		Column B
1.	Electrons that are free to move in metals	a.	alloy
2.	For a monatomic ion, is equal to the charge	b.	anion
	The force that holds two atoms together	c.	cation
	A charged particle containing more than one atom	d.	chemical bond
		e.	delocalized electrons
	A positively charged ion	f.	electrolyte
	A negatively charged ion	g.	electron sea model
7.	An ionic compound whose aqueous solution conducts electricity	h.	formula unit
8.	The name for most ionic compounds other than oxides	i.	interstitial alloy
<u> </u>	Represents the way electrons exist in metals	j.	ionic bond
10.	A charged particle containing only one atom	k.	lattice energy
11.	The energy needed to separate the ions of an ionic compound	l.	metallic bond
12.	The electrostatic force that holds oppositely charged particles	m.	monatomic ion
	together	n.	oxidation number
13.	A mixture of elements that has metallic properties	0.	oxyanion
14.	A mixture formed when small atoms fill holes in a metallic crystal	p.	polyatomic ion
15.	A polyatomic ion composed of an element bonded to at least one oxygen atom	q.	salts
16.	Shows the simplest ratio of ions in an ionic compound		•
17.	The attraction of a metallic cation for delocalized electrons		